Cambrian Period

540 to 500 mya

Geologic History of the Delaware Piedmont

The Delaware Piedmont is but a small part of the Appalachian Mountain system that extends from Georgia to Newfoundland. This mountain system is the result of tectonic activity that took place during the Paleozoic era, between 543 and 245 million years ago. Since that time, the mountains have been continuously eroding, and their deep roots slowly rising in compensation as the overlying rocks are removed. It is surprising to find that although the Delaware Piedmont has passed through the whole series of tectonic events that formed the Appalachians, the mineralogy and structures preserved in Delaware were formed by the early event that occurred between 470 and 440 million years ago, called the Taconic orogeny.

Setters Formation

In Delaware, predominantly an impure quartzite and garnet-sillimanite-biotite-microcline schist. Major minerals include microcline, quartz, and biotite with minor plagioclase, and garnet. Muscovite and sillimanite vary with metamorphic grade. Accessory minerals are iron-titanium oxides, zircon, sphene, and apatite. Microcline is an essential constituent of the quartzites and schists and serves to distinguish the Setters rocks from the plagioclase-rich schists and gneisses of the Wissahickon Formation.

Cockeysville Marble

In Delaware, predominantly a pure, coarsely crystalline, blue-white dolomite marble interlayered with calc-schist. Major minerals in the marble include calcite and dolomite with phlogopite, diopside, olivine, and graphite. Major minerals in the calc-schist are calcite with phlogopite, microcline, diopside, tremolite, quartz, plagioclase, scapolite, and clinozoisite. Pegmatites and pure kaolin deposits and quartz occur locally.


Massive fine-grained dark to light yellow-green serpentinite. Contacts with the Wissahickon Formation are not exposed.

Metapyroxenite and metagabbro (undifferentiated)

Light-colored coarse-grained rocks composed of interlocking grains of light colored, fibrous amphiboles, most likely magnesium-rich cummingtonite and/or anthophyllite with possible clinochlor. These rocks become finer grained and darker as hornblende replaces some of the Mg-rich amphiboles. Associated with the metapyroxenites are coarse-grained metamorphosed gabbros composed of hornblende and plagioclase. The metapyroxenites and metagabbros are probably cumulates.

Wissahickon Formation

Interlayered psammitic and pelitic gneiss with amphibolite. Psammitic gneiss is a medium- to fine-grained biotite-plagioclase-quartz gneiss with or without small garnets. Contacts with pelitic gneiss are gradational. Pelitic gneiss is medium- to coarse-grained garnet-sillimanite-biotite-plagioclase-quartz gneiss. Unit has a streaked or flasered appearance owing to the segregation of garnet-sillimanite-biotite stringers that surround lenses of quartz and feldspar. Throughout, layers of fine to medium-grained amphibolite composed of plagioclase and hornblende, several inches to

GM13 Geologic Map of New Castle County, Delaware

This map shows the surficial geology of New Castle County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water.