stratigraphy

Baltimore Gneiss

Granitic gneiss with swirling leucosomes and irregular biotite-rich restite layers is the dominant lithology and constitutes approximately 75 to 80 percent of the exposed rocks. The remaining 20 to 25 percent comprises hornblende-biotite gneiss, amphibolite with or without pyroxene, and pegmatite. Granitic gneiss is composed of quartz, plagioclase, biotite, and microcline. Minor and accessory minerals are garnet, muscovite, magnetite, ilmenite, sphene, apatite, and zircon. The hornblende gneiss contains plagioclase, quartz, hornblende, and biotite with/without orthopyroxene. Accessory minerals are garnet, muscovite, clinozoisite, perthitic orthoclase, iron-titanium oxides, sphene, and apatite. Amphibolites are composed of subequal amounts of hornblende and plagioclase with minor quartz, biotite, clinopyroxene, and orthopyroxene.

Setters Formation

In Delaware, predominantly an impure quartzite and garnet-sillimanite-biotite-microcline schist. Major minerals include microcline, quartz, and biotite with minor plagioclase, and garnet. Muscovite and sillimanite vary with metamorphic grade. Accessory minerals are iron-titanium oxides, zircon, sphene, and apatite. Microcline is an essential constituent of the quartzites and schists and serves to distinguish the Setters rocks from the plagioclase-rich schists and gneisses of the Wissahickon Formation.

Cockeysville Marble

In Delaware, predominantly a pure, coarsely crystalline, blue-white dolomite marble interlayered with calc-schist. Major minerals in the marble include calcite and dolomite with phlogopite, diopside, olivine, and graphite. Major minerals in the calc-schist are calcite with phlogopite, microcline, diopside, tremolite, quartz, plagioclase, scapolite, and clinozoisite. Pegmatites and pure kaolin deposits and quartz occur locally.

Serpentinite

Massive fine-grained dark to light yellow-green serpentinite. Contacts with the Wissahickon Formation are not exposed.

Metapyroxenite and metagabbro (undifferentiated)

Light-colored coarse-grained rocks composed of interlocking grains of light colored, fibrous amphiboles, most likely magnesium-rich cummingtonite and/or anthophyllite with possible clinochlor. These rocks become finer grained and darker as hornblende replaces some of the Mg-rich amphiboles. Associated with the metapyroxenites are coarse-grained metamorphosed gabbros composed of hornblende and plagioclase. The metapyroxenites and metagabbros are probably cumulates.

Wissahickon Formation

Interlayered psammitic and pelitic gneiss with amphibolite. Psammitic gneiss is a medium- to fine-grained biotite-plagioclase-quartz gneiss with or without small garnets. Contacts with pelitic gneiss are gradational. Pelitic gneiss is medium- to coarse-grained garnet-sillimanite-biotite-plagioclase-quartz gneiss. Unit has a streaked or flasered appearance owing to the segregation of garnet-sillimanite-biotite stringers that surround lenses of quartz and feldspar. Throughout, layers of fine to medium-grained amphibolite composed of plagioclase and hornblende, several inches to 30 feet thick or as large massive bodies, are in sharp contact with the psammitic and pelitic gneisses. An attempt has been made to show some of the amphibolites mappable at the scale of the map. Granitic pegmatite is ubiquitous and occurs at all scales. Pyroxene bearing quartzite with garnet occurs locally near the contact with the Wilmington Complex. An ultramafic lens composed of cumulus layers of serpentinized peridotite, metapyroxenite, and metagabbro occurs near Hoopes Reservoir. The ultramafic lens may be correlative with the Baltimore Mafic Complex.

Pegmatite

Coarse- to very coarse-grained granitic pegmatite with tourmaline crystals locally. Where outcrop is present, pegmatite is tabular and concordant with the regional trend of the underlying Wissahickon Formation. Lenticular xenoliths of Wissahickon gneisses occur locally in the pegmatite.

Windy Hills Gneiss

Thinly interlayered, fine- to medium-grained hornblende-plagioclase amphibolite, biotite gneiss, and felsic gneiss, possibly metavolcanic. Felsic gneisses contain quartz and plagioclase with or without microcline with minor pyroxene and/or hornblende and/or biotite. Metamorphic grade in this unit decreases from granulite facies in the northeast to amphibolite facies toward the southwest. Correlated with the Big Elk Member of the James Run Formation in Cecil County, Maryland.

Faulkland Gneiss

Predominantly fine- to coarse-grained amphibolites and quartz amphibolites with minor felsic rocks, probably metavolcanic. Major minerals are amphibole and plagioclase with or without pyroxene and/or quartz. Amphibole may be hornblende, cummingtonite, gedrite, and/or anthophyllite. Halos of plagioclase and quartz around porphyroblasts of magnetite, orthopyroxene, and garnet are common features.

Christianstead Gneiss

Coarse-grained, foliated granodioritic gneiss. Major minerals are biotite, microcline, plagioclase, and quartz. Includes thin layers of fine-grained foliated amphibolite plus large pegmatites.